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high-density linkage map consisting of 3,184 bins was used 
to assess (1) the additive and additive-by-additive effects 
determined using recombinant inbred lines; (2) the domi-
nance and dominance-by-dominance effects from a mid-
parent heterosis dataset; and (3) the various genetic effects 
in the “immortalized F2” population. Compared with a 
low-density simple sequence repeat map, the bin map iden-
tified more quantitative trait loci, with higher LOD scores 
and better accuracy of detecting quantitative trait loci. The 
bin map showed that, among all traits, dominance was 
more important to heterosis than other genetic effects. The 
importance of overdominance/pseudo-overdominance was 
proportional to the amount of heterosis. In addition, epista-
sis contributed to heterosis as well. Phenotypic variances 
explained by the QTLs detected were close to the broad-
sense heritabilities of the observed traits. Comparison of 
the analyzed results obtained for the “immortalized F2” 
population with those for the mid-parent heterosis dataset 
indicated identical genetic modes of action for mid-parent 
heterosis and grain yield performance of the hybrid.

Introduction

Heterosis, the phenomenon in which F1 hybrids exhibit 
phenotypes superior to their parents (Shull 1908; East 
1908), has been exploited extensively in many field crops 
and animals to increase agricultural yields throughout the 
world. Extensive research on the genetic basis of heterosis 
has been conducted for more than a century, but the molec-
ular underpinnings of the phenomenon remain conjectural 
(Falconer 1981; Stuber 1994; Duvick 1999).

Accumulated evidence suggests that heterosis can be 
accounted for by partial to complete dominance (Davenport 
1908; Jones 1917; Hallauer et  al. 1988). Overdominance 
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was considered to be important in pioneering studies (Hull 
1945; Crow 1948; Stuber et al. 1992). Nonetheless, several 
rounds of recombination and re-analysis of the data from 
quantitative trait loci (QTL) mapping populations indicated 
that pseudo-overdominance caused by repulsion-phase 
linkages is more likely to account for heterosis than true 
overdominance (Crow et  al. 1952; Gardner and Lonquist 
1959; Moll et  al. 1964; Cockerham and Zeng 1996; Gra-
ham et  al. 1997). Larièpe et  al. (2012) conducted a QTL 
mapping study using three recombinant inbred populations 
and the North Carolina Design III approach (Comstock 
and Robinson 1948, 1952). The results showed that linked 
genes with small individual effects might often appear as 
a single major QTL, particularly in chromosomal regions 
with high gene density relative to recombination. Epista-
sis might also contribute to the expression of heterosis 
in elite crosses (Richey 1942; Williams 1959; Minvielle 
1987). Although a large number of genetic studies have 
been performed and each usually favors one of several 
potential hypotheses for each individual analysis, no uni-
versal conclusion has emerged regarding whether hetero-
sis is mediated by a single mechanism or multiple genetic 
mechanisms across species. It was recently suggested that 
a combination of different genetic principles might best 
explain the manifestation of heterosis (Swanson-Wagner 
et  al. 2006; Lippman and Zamir 2007). The dominance 
and overdominance hypotheses are certainly not mutually 
exclusive, and there are likely to be additional explanations 
for heterosis (Schnable and Springer 2013).

The use of molecular markers to analyze the genetic 
basis of quantitative traits in many crops has made it pos-
sible to identify and characterize the loci responsible for 
heterosis (Melchinger et al. 2007; Larièpe et al. 2012; Goff 
and Zhang 2013). However, low-density markers do not 
allow for the dissection of the multiple linked genes that 
control complex traits. Large-scale analysis of markers 
that cover the entire genome and can account for almost all 
potential recombinant events in a population might improve 
our understanding of the modes of allele action as related 
to heterosis. The source of genetic material and experimen-
tal design directly affect the ease with which the molecular 
bases of heterotic effects can be identified. Primary popula-
tions (e.g., members of generation F2 or F3) have been used 
widely to study heterosis (Yan et al. 2006; Yu et al. 1997). 
However, an obvious limitation on their use is the lack of 
an unlimited supply of genetically identical seeds for repli-
cation of experiments.

Hua et al. (2002) introduced an experimental design devel-
oped from pair crosses of recombinant inbred lines (RILs), 
which they called an “immortalized F2” (or IF2) population. 
This population resembles an F2 population in the sense that 
the compositions and frequencies of single and multi-locus 
genotypes are the same as those of an F2 population, but an 

IF2 can be regrown repeatedly. The use of rice IF2 populations 
to determine the genetic basis of heterosis has been proposed 
(Hua et  al. 2003; Zhou et  al. 2012). Here, we used an IF2 
population of maize generated from the elite heterotic hybrid 
Yuyu22 (Zong3 × 87-1), which has been widely planted in 
China over the past 2 decades. The mean performance of 
Yuyu22 in the report of Tang et al. (2010) was 10.63 t/ha for 
grain yield, 21.08 cm for ear length, 16.51 for ear row num-
ber, and 35.46 g for 100-kernel weight.

Although several heterotic loci for grain yield in maize 
have been identified in the IF2 population (Tang et  al. 
2010), many questions surrounding their effects remain 
unresolved owing to the low density of the markers used 
and the limited methods available for their analysis. To 
address these deficiencies, we re-genotyped the materi-
als using the maize SNP50 array (Ganal et  al. 2011) and 
constructed a high-density bin map with 3,184 bins. SNPs 
cosegregating in two contiguous block borders were 
lumped as a bin (Xie et al. 2010). Our results showed that 
a bin map can more completely characterize heterosis com-
pared with a low-density simple sequence repeat (SSR) 
linkage map. The QTL mapping, which included an assess-
ment of both additive/dominance and epistasis factors, was 
conducted using inclusive composite interval mapping 
(ICIM) (Li et al. 2007; Zhang et al. 2008) but not CIM and 
two-way analysis of variance as was done by Tang et  al. 
(2010). Marker variables were considered in a linear model 
in ICIM for additive/dominance mapping, and both marker 
variables and marker-pair multiplications were simultane-
ously considered for epistasis mapping.

In this study, we analyzed the genetic effects of all the 
bins in the IF2 population including additive, dominance 
and two-locus interactions, and assessed their relative con-
tributions to heterosis in the F1 hybrid. We also analyzed a 
simulated IF2 population and mid-parent heterosis (MPH) 
dataset to explore modes of allele action for MPH and per 
se performance of the hybrid.

Materials and methods

Plant materials and SNP bin map

We used a set of 294 F8 RILs derived using the single-seed 
descent method from Yuyu22. Similar to the procedure for 
generating the IF2 population described previously (Hua 
et al. 2002, 2003; Tang et al. 2010), the 294 RILs were ran-
domly divided into two groups of 147 RILs. Then, single 
crosses were randomly made between the two groups with-
out replacement. This procedure was repeated three times to 
produce 441 (147 × 3) single crosses, forming the IF2 popu-
lation (Fig.  1). The RIL and IF2 populations were planted 
in 2003 and 2004 in Beijing (north of China, average daily 
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temperature of 11.8  °C, and average annual rainfall of 
585 mm) and Xunxian, Henan Province (center of the North 
China Plain, average daily temperature 14.2 °C, and average 
annual rainfall 784  mm). At two locations, populations of 
RIL and IF2 were in neighbored blocks, each planted in a 
randomized complete block design with three replications. 
Each plot included one row, 4 m long, with 0.67 m between 
rows. Population density was 45,000 plants per ha. After 
maturity, ten ears from consecutive plants in each plot were 
harvested by hand and air-dried until the grain moisture 
reached 13 %. The four traits evaluated were grain yield, ear 
length, 100-kernel weight, and row number. The details of 
the mating scheme, the genetic characteristics of the popula-
tion, and the field experiments have been described previ-
ously (Tang et al. 2010; Guo et al. 2012).

All of the 294 RILs were genotyped with 261 polymor-
phic SSR markers covering the whole genome. The geno-
types of 441 hybrids in the IF2 population were deduced in 
terms of segments derived from each parent. A low-density 
linkage map was constructed using the SSR genotypes of 
the 294 RILs (Tang et  al. 2010). In this study, a subset of 
190 RILs was genotyped using a Maize SNP50 genotyping 
chip (Ganal et al. 2011). A bin map consisting of 3,184 bins 
was constructed with 18,840 polymorphic markers between 
Zong3 and 87-1, using an own developed algorithm. In addi-
tion, 175 RILs were genotyped with 1,536 SNPs (Yan et al. 
2010). Of the two panels of RILs, 109 lines overlapped, 
from which the genotype datasets were derived from both 

3,184 bins and 1,536 SNPs. Bins (3,184) from the parents 
(Zong3 and 87-1) were imputed onto the 175 RILs by first 
determining the physical position of the markers via BLAST 
to the genome B73 RefGen_v2. For each bin, its value for a 
RIL was assigned based on the SNP value of the RIL par-
ents and on the genotype of the 1,536 SNPs in that RIL. 
Thus, the 109 overlapping lines had two panels of high-
density genotypic information: from SNP genotyping chips 
and from imputation. The correlation coefficient between 
genotyped and imputed bins of 109 RILs was greater than 
0.96, which underscored the accuracy of the imputed bin 
genotypes of the remaining 66 RILs. Consequently, the RIL 
population based on the bin map consisted of 256 individu-
als—190 genotyped and 66 imputed. Data for 312 crosses 
were obtained based on the 256 RILs from the dataset of 441 
crosses. The bin genotypes of each cross in the IF2 popula-
tion were deduced from both of its RIL parents.

Data analysis and QTL mapping

Phenotypic data were analyzed for sources of variation 
using the following model:

where yijk is the trait value of the ith environment, jth rep-
lication and kth entry; μ is the overall mean; ei is the ith 
environment effect; rj is the jth replication effect; gk is the 
kth entry effect; gek×i is the interaction effect of the kth 
entry by the ith environment; and εijk is the residual effect. 
All the variables except μ are considered as random effects. 
Broad-sense heritability (H2) is equal to genetic vari-
ance (VG) divided by summation of genetic variance (VG), 
G ×  E variance (VG×E) and error variance (Vε). The best 
linear unbiased predictors (BLUPs) for each line in RILs 
and each hybrid in IF2 were calculated with a mixed linear 
model accounting for effects of environment, replication, 
genotype, and genotype by environment. The estimated 
genetic variance and error variance by analysis of variance 
were for BLUP estimators. The BLUPs for each line and 
hybrid from four locations were analyzed via QTL map-
ping. The MPH of each F1 in the IF2 population was calcu-
lated as follows: MPH = F1 − MP, where F1 is the BLUP 
genotypic value of the F1, and MP is the mid-parental value 
of the corresponding parents. There was only dominance 
effect in the MPH dataset under the genetic model of addi-
tive and dominance effect, where the QTL effects were 
estimated by the differences between heterozygotes and the 
mean of the parental homozygotes.

QTL mapping was conducted separately with three dif-
ferent genotypic datasets (RIL, IF2, and MPH) based on the 
low-density SSR linkage map and high-density bin map. 
The ICIM of QTLs was done using QTL IciMapping soft-
ware (http://www.isbreeding.net). The largest P value for 

yijk = µ + ei + rj + gk + gek×i + εijk ,

F8: RILs

Parent1:
Zong3

Parent2:
87-1

F1: Yuyu22

RIL A RILA1 RILA2 RILA3 RILA4 RILAn-1 RILAn

RIL B RILB1 RILB2 RILB3 RILB4 RILBn-1 RILBn

IF2 1F1 2F1 3F1 4F1 n-1F1 nF1

MPH 1H 2H 3H 4H n-1H nH

H=F1-(RILA+RILB)/2

Fig. 1   Schematic representation of the development scheme for the 
RIL and IF2 populations. The RILs were divided into two groups 
equally and randomly: RILA and RILB. This procedure was repeated 
three times, and finally 3 ×n F1 were produced, forming the IF2 pop-
ulation

http://www.isbreeding.net
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entering variables in stepwise regression of phenotype on 
marker variables was 0.001 for additive/dominance QTLs 
and 0.0005 for epistatic QTLs. The largest P-value for 
removing variables was assumed to be twice the P-value 
for entering variables. The step size in the ICIM was 
0.1  cM for additive/dominance QTL, which was lower 
than the average genetic distance between flanking markers 
(0.3 cM). For epistatic QTL, the step size was set to 2 cM. 
A LOD score threshold of 2.35 corresponds to an approxi-
mate nominal significance level of P = 0.001 per test with 
one degree of freedom. When QTL detection was for addi-
tive/dominance and epistasis, the LOD score thresholds 
of 3.0 and 4.0 were equivalent to a significance level of 
approximately 0.001, with degrees of freedom =  2 and 4 
(Lander and Botstein 1989). Using the 1,000 permutation 
test, the LOD score threshold on the bin map was almost 
0.5 higher than the value on the SSR map regardless of the 
population type. As there was not much difference in LOD 
score between the low- and high-density genetic maps, an 
empirical threshold of 2.5 was used to declare the existence 
of a QTL with an additive and/or dominance effect, and a 
threshold of 5.0 was used to declare the existence of an epi-
static QTL. We also used single-marker analysis (SMA) to 
identify QTLs based on the difference between the mean 
phenotypic values of groups of individuals differing in 
marker genotypes.

Simulated phenotypes and genotypes of RIL and IF2 
populations

Phenotypes of individuals in these populations were simu-
lated, considering that the trait of interest was controlled by 
20 QTLs. The linkage map built from the actual maize RIL 
population was used, and two unlinked QTLs were distrib-
uted on each chromosome. Under the additive and domi-
nance model in quantitative genetics, we generated 100 sets 
of random additive (a) and dominance (d) effects for the 
20 QTLs, in which the genetic effects followed the uniform 
distribution from 0 to 1. According to the effects of QTLs, 
the ratio of the dominance variance to additive variance 
(VD/VA) was estimated as 1

2

∑20
m=1 d2

/

∑20
m=1 a2, equiva-

lent to a random-mating population in which there is no 
linkage equilibrium and the allele frequency is 0.5. Among 
the 100 sets of QTL effects, four were chosen to represent 
four types of genetic architectures whose respective VD/VA 
values were closest to 0.5, 1, 2, and 3. For each level of 
variance ratio, 294 F8 RILs were simulated using the genet-
ics and breeding simulation tool of QuLine, formerly called 
QuCim (Wang et al. 2003, 2004). An IF2 population con-
sisting of 441 hybrids was generated from the 294 RILs. 
The simulation was repeated 40 times, with 10 sets of RIL 
and IF2 populations constructed for each type of genetic 
architecture. Similar to the actual populations, MPH data 

were acquired from the RIL and IF2 populations. The pro-
cedure of QTL mapping in the simulation was the same as 
in the real dataset.

Results

Construction of a high‑density bin map

The 18,840 polymorphic markers were mapped and 
scored into 3,184 bins, accounting for total genetic and 
physical distances of 2,657.9 cM and 2,046.3 Mb, respec-
tively. The average genetic distance between flanking bins 
was 0.84  cM, and the average physical size of a bin was 
0.64 Mb. The genotypes of 312 F1 hybrids were deduced 
from their corresponding RIL parents to provide a bin map 
for the crosses (Figure S1). There were three genotypes 
in each bin: homozygous genotype from Zong3 (MM), 
homozygous genotype from 87-1 (mm), and heterozygous 
genotype (Mm). For each cross, the average proportion of 
MM, mm, and Mm was 23.6, 26.8, and 49.5 %, respectively. 
Therefore, the composition of genotypes in IF2 was similar 
to that in an F2 population. This population could therefore 
be used to detect QTLs with the same analytical method 
used for the F2 population.

Identification of major QTLs in an IF2 population

Based on the bin map, we dissected the genetic underpin-
nings of grain yield and yield components within the IF2 
population. The bin locations and genetic effects of signifi-
cant QTLs were detected and estimated using ICIM (Table 
S1). The degree of dominance was defined for each QTL 
as the ratio of the dominance effect to the additive effect 
(d/a). If the value of |d/a| was greater than 1.26, the QTL 
was considered as the overdominance type; otherwise, 
the QTL was considered as the dominance type (Falconer 
and Mackay 1996). A total of 11 QTLs that affected grain 
yield were mapped at a given value of LOD score, and each 
accounted for an average phenotypic variance of 4.9 %. Six 
QTLs with |d/a| ≤ 1.26 exhibited dominance, whereas the 
remaining five QTLs exhibited overdominance (Table S1). 
Sixteen QTLs were identified for ear length, five of which 
QTLs had |d/a| > 1.26, displaying overdominance, the 
others were of the dominance type. The 21 QTLs control-
ling 100-kernel weight included 16 dominant QTLs and 5 
overdominant QTLs. All of them were distributed across 
the entire genome except chromosome 4, and each QTL 
accounted for an average phenotypic variance of 3.8  %. 
Only 2 of the 15 QTLs for row number were of the over-
dominance type. Across the four traits, the number of dom-
inant QTL exceeded the number of overdominant QTL, 
especially for yield component traits.
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A bin map can identify more QTLs with higher resolution 
than a SSR linkage map

There were many differences between the SSR and bin 
maps, especially with respect to the relative saturation of 
recombination events by markers (Table S2). The bin map 
consisted of 3,184 markers across the whole genome, and 
the number of markers per chromosome ranged from 221 
to 522, whereas the SSR map was composed of 261 mark-
ers across the genome, and the number of markers per 
chromosome ranged from 11 (chromosome 9) to 36 (chro-
mosome 1). The maximum genetic distance between flank-
ing markers was 38.1 cM on the SSR linkage map—much 
larger than 7.9 cM on the bin map. Particularly, the average 
genetic distance between flanking markers on the bin map 
was 0.84 cM—much shorter than 9.41 cM on the SSR map. 
These data indicated that the genome wide marker density 
was higher for the bin map than for the SSR map.

The high-density bin map represented almost all cross-
overs in the bi-parental population studied, and this was 
expected to improve the power and resolution of QTL 
detection. With ICIM, a high-density bin map was shown 
to have many advantages for QTL mapping compared with 
a low-density SSR linkage map (Table S3 and Figures S2). 
First, the high-density bin map could detect a larger num-
ber of significant loci: for all traits, 49 QTLs were identi-
fied using the low-density map compared with 63 QTLs 
identified using the high-density map in the IF2 population. 
Second, the QTLs already detected using the low-density 
SSR map had higher LOD scores when the high-density 
bin map was used. Taking grain yield in the RIL population 
as an example, LOD scores of the QTL on chromosomes 
5 and 7 were 4.0 and 5.8, respectively, for the low-density 
SSR map, but increased to 7.2 and 9.4 at approximately the 
same locations on the high-density bin map (Figure S2). 
Third, the high-density bin map improved the resolution 

of QTL mapping from an average of 10.82 cM to an aver-
age of 0.88 cM (Table S3), which allowed us to investigate 
the candidate genes present in the QTL between flanking 
markers. Fourth, the total phenotypic variation explained 
(PVE) by the QTLs detected using the high-density bin 
map was larger than the value using the low-density SSR 
map (Figure  2). When using the additive and dominance 
genetic model, the PVE for grain yield using the low-den-
sity SSR map was 12.6 and 32.9 for the RILs and the IF2 
population, respectively, whereas these values increased to 
31.0 and 40.8 using the high-density map. 

Cumulative effects of dominance account for the majority 
of heterosis

To determine the primary mode by which heterosis occurs, 
we tested additive and dominance effects for each bin using 
SMA on the whole genome. By calculating the degree of 
dominance (d/a), we categorized the bins into two types—
dominance and overdominance—each of which included 
negative and positive values. The ratio d/a was calculated 
in two ways: both additive and dominance genetic effects 
(a and d) were estimated from the IF2 population; additive 
effect (a) was estimated from RILs and dominance effect 
(d) from MPH dataset. For both the IF2 and the RIL/MPH 
datasets, the number of bins showing dominance was larger 
than the number showing overdominance for all traits 
(Fig.  3). Further, stronger trait heterosis was associated 
with more bins showing overdominance and fewer bins 
showing dominance. Grain yield exhibited the strongest 
heterosis, followed by ear length, 100-kernel weight, and 
row number (Table S4). The number of “dominance” bins 
in both the IF2 and RIL/MPH datasets accounted for 58 and 
55 % for grain yield, 59 and 70 % for ear length, 68 and 
85 % for 100-kernel weight, 75 and 85 % for row number, 
respectively (Fig.  3). Positive and negative values for d/a 

Fig. 2   Phenotypic variance 
explained by the QTL effects 
based on the low- and high-
density linkage maps in the 
RIL, IF2, and MPH datasets for 
yield and three yield component 
traits. PVE phenotypic variance 
explained, Epi epistasis
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were randomly distributed throughout the genome for all 
traits.

Considering that it was unlikely that most bins would 
associate with yield and its components, we excluded bins 
that did not exceed the given LOD score threshold. The 
SMA results revealed that most of the bins that were sig-
nificantly associated with traits were of the dominance type 
for all traits: 81 % for grain yield and >90 % for yield com-
ponent traits (Fig.  3). The results obtained by ICIM were 
very similar to those obtained by SMA. In conclusion, both 
ICIM and SMA demonstrated that QTLs showing domi-
nance constituted the primary mode by which heterosis 
occurs; however, overdominance also contributed, espe-
cially for grain yield.

Epistasis also contributes to grain yield heterosis

Decades of research on epistasis have suggested the impor-
tance of multi-gene interactions in controlling heterosis 
for grain yield in plants (Yu et  al. 1997; Li et  al. 1997a, 
b). Here we observed that the major QTLs did not explain 

all the phenotypic variance, which led us to assess the con-
tribution of epistasis in our dataset. The IF2 population is 
ideal for identifying the genetic components of heterosis, 
as it permits detailed dissection of additive genetic effects 
(a), dominant genetic effects (d), and the four types of two-
locus interactions (AA, AD, DA, DD). A total of 101 two-
locus interactions for the four traits were identified based 
on the bin map (Figure S3). The interactions could be par-
titioned into four types: AA-oriented, AD-oriented, DA-ori-
ented, and DD-oriented according to the interactive effect. 
Within the IF2 population, the DD-oriented QTL had the 
highest frequency.

We also calculated the proportion of PVE by analyzing 
of epistatic QTLs (Fig. 2). Compared with PVE by single-
locus QTLs, epistatic QTLs explained less of the pheno-
typic variance for all traits except for grain yield in the RIL 
population and the 100-kernel weight in the MPH dataset 
(Fig. 2). In the IF2 population, epistasis explained 28 % of 
the phenotypic variance for grain yield, followed by 19 % 
for ear length, 14 % for row number, and 4 % for 100-ker-
nel weight. The PVE values determined by single-locus 
QTLs were 41 % for grain yield, 50 % for ear length, 71 % 
for 100-kernel weight, and 69  % for row number. Given 
that PVE values based on single-locus QTLs and epistasis 
together were close to the heritability of each trait, the bin 
map permitted us to account for almost all phenotypic vari-
ation for the four traits.

Identical modes of gene action for MPH and per se 
performance of the hybrid

Heterotic effects have been determined based on MPH, and 
several QTLs that control MPH (heterotic loci) have been 
identified both in rice and maize (Hua et  al. 2003; Tang 
et al. 2010). Given that most of the QTLs controlling grain 
yield performance and MPH do not overlap, it appears that 
these two phenotypes are controlled by different genetic 
factors (Hua et  al. 2003; Tang et  al. 2010). Regardless of 
whether heterotic loci were independent or whether they 
were part of loci for per se performance of the hybrid, these 
alternatives are difficult to distinguish in actual populations. 
Estimates of the additive effect of the same QTL differed 
between the RIL and IF2 populations, and estimates of the 
dominance effect of the same QTL differed between the IF2 
population and the MPH dataset, which could be caused 
by differences in the complexity of statistical models, or 
in different population size, among other possible factors. 
It is also difficult to determine which estimation method is 
more accurate using actual populations. However, all of the 
issues can be addressed in simulation studies provided that 
the true QTLs are known.

In our simulation studies, more true-positive QTLs 
were detected in the IF2 population, followed by the 
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RIL, and finally the MPH dataset (Table  1). However, 
false-positive QTLs were also detected more frequently 
in the IF2 population than in the RIL and MPH dataset 
regardless of the genetic architecture. Taking the genetic 
architecture VD/VA  =  0.5 as an example, an average of 
16.7 true-positives among 20 QTL was detected in the 
IF2 population, followed by an average of 14.1 in the 
RILs and 12.9 in the MPH dataset. The average num-
ber of false-positive QTL was 3.1 in the IF2 population 
compared with values of 0.6 and 0.5 for the RILs and 
the MPH dataset, respectively. The same situation was 
also observed for other genetic architectures, i.e., VD/
VA =  1, 2, or 3. For the comparison between MPH and 
IF2, almost all the QTLs in the MPH dataset was also 
detected in the IF2 population, and the majority of QTLs 
in the MPH dataset displayed overdominance including 
mild (1.75  >  d/a  >  1.26), moderate (2.25  >  d/a  >  1.76) 
and extreme (d/a > 2.26) (Fig. 4). For the genetic archi-
tecture VD/VA = 0.5, an average of 11.9 of the 12.9 true-
positive QTL in the MPH dataset was also detected in 
the IF2 population, in which 7.3 of 11.9 QTL exhibited 
overdominance. When VD/VA  =  1, 2, or 3, a range of 
93.1 to 96.7 % of true-positive QTL in the MPH dataset 
were also detected in the IF2 populations, in which 68.9–
90.5 % of the QTL were of the overdominance type. Our 
simulation results also demonstrated that estimating the 

additive effects was more accurate for the RIL popula-
tion than for the IF2 population, whereas the dominance 
effects were underestimated in the IF2 population and 
substantially less abundant in the MPH dataset than in 
the IF2 population (results not shown). In summary, the 
simulation analysis indicated identical modes of allele 
action for MPH and per se performance of the hybrid.

Table 1   QTL identification among various genetic compositions in RILs, IF2 populations, and the MPH dataset in simulation studies

a  L QTL effect was lower than the true value, b E QTL effect was equal to the true value with 1 error range allowed, c H QTL effect was the 
higher than true value, d F false-positive QTL

Genetic architecture No. of QTL with additive effect No. of QTL with dominance effect

VD/VA = 0.5 RIL 14.1 ± 2.23 IF2 16.7 ± 1.49 MPH 12.9 ± 1.45 IF2 16.7 ± 1.49

RIL-L a 2.7 ± 1.4 IF2-L 5.9 ± 1.66 MPH-L 12.3 ± 1.34 IF2-L 7.9 ± 2.18

RIL-E b 10.4 ± 1.96 IF2-E 8.3 ± 1.83 MPH-E 0.8 ± 0.79 IF2-E 7.8 ± 2.74

RIL-H c 1 ± 1.05 IF2-H 2.5 ± 1.65 MPH-H 0 ± 0 IF2-H 1 ± 1.33

RIL-F d 0.6 ± 0.84 IF2-F 3.1 ± 1.79 MPH-F 0.5 ± 0.71 IF2-F 3.1 ± 1.79

VD/VA = 1 RIL 14.1 ± 2.23 IF2 16.6 ± 1.52 MPH 13.1 ± 2.28 IF2 16.6 ± 1.52

RIL-L 2.7 ± 1.42 IF2-L 6.3 ± 1.83 MPH-L 12.5 ± 2.32 IF2-L 9.3 ± 1.83

RIL-E 10.4 ± 1.96 IF2-E 7.6 ± 2.55 MPH-E 0.6 ± 0.7 IF2-E 5.9 ± 1.52

RIL-H 1 ± 1.05 IF2-H 2.8 ± 1.48 MPH-H 0 ± 0 IF2-H 1.5 ± 1.08

RIL-F 0.6 ± 0.84 IF2-F 2.2 ± 1.4 MPH-F 0.5 ± 0.53 IF2-F 2.2 ± 1.4

VD/VA = 2 RIL 14.1 ± 2.23 IF2 16.1 ± 1.45 MPH 12.6 ± 1.71 IF2 16.1 ± 1.45

RIL-L 2.7 ± 1.4 IF2-L 6.4 ± 1.26 MPH-L 12.1 ± 1.79 IF2-L 8.5 ± 0.97

RIL-E 10.4 ± 1.96 IF2-E 6.5 ± 2.17 MPH-E 0.5 ± 0.71 IF2-E 4.3 ± 1.57

RIL-H 1 ± 1.05 IF2-H 3.2 ± 1.87 MPH-H 0 ± 0 IF2-H 3.3 ± 1.42

RIL-F 0.6 ± 0.84 IF2-F 2.2 ± 1.48 MPH-F 0.3 ± 0.67 IF2-F 2.2 ± 1.48

VD/VA = 3 RIL 14.1 ± 2.23 IF2 15.7 ± 1.7 MPH 12 ± 2.11 IF2 15.7 ± 1.7

RIL-L 2.7 ± 1.4 IF2-L 6.2 ± 1.55 MPH-L 11.5 ± 2.17 IF2-L 8.4 ± 1.9

RIL-E 10.4 ± 1.96 IF2-E 6.6 ± 2.41 MPH-E 0.1 ± 0.32 IF2-E 4.2 ± 1.75

RIL-H 1 ± 1.05 IF2-H 2.9 ± 1.97 MPH-H 0.4 ± 1.26 IF2-H 3.1 ± 2.02

RIL-F 0.6 ± 0.84 IF2-F 2.4 ± 1.26 MPH-F 0.5 ± 0.53 IF2-F 2.4 ± 1.26
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Fig. 4   QTL identified in the MPH dataset showing dominance as 
well as mild, moderate, and extreme overdominance in the IF2 popu-
lation among varying genetic architectures
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Discussion

The bin map and IF2 population provide an effective basis 
for complete genetic characterization of heterosis

We used a high-density bin map and an IF2 popula-
tion to investigate the genetic basis of heterotic enhance-
ment of grain yield. The usefulness of IF2 populations of 
rice, maize, oilseed rape, and cotton has been discussed 
(Hua et al. 2002, 2003; Chen et al. 2007; Tang et al. 2010; 
Liu et  al. 2011). The distinct advantages of high-density 
bin maps have been well documented (Xie et  al. 2010; 
Pan et  al. 2012; Zhou et  al. 2012). In maize, the genetic 
components of heterotic performance have not been fully 
characterized using the low-density SSR map employed 
previously (Tang et al. 2010). This SSR map includes 261 
markers, and the average genetic distance between flanking 
markers is 9.41  cM, which might leave out quite a num-
ber of recombination events. In contrast, the high-density 
bin map we constructed contains 3,184 bins, each bin con-
sisting of 6 SNPs on average. The average genetic distance 
between flanking markers was 0.84  cM, which permitted 
identification of 14 more QTLs than the SSR map in the IF2 
population for traits combined. Compared with each QTL 
on the bin map relative to the QTLs on the SSR map, 23 
QTLs were detected on both maps within the allowed range 
of error (Table S1). From the viewpoint of the degree of 
dominance, only 6 of 23 QTLs performed differently, dis-
playing overdominance on the SSR map and dominance on 
the bin map, or vice versa. Consequently, the highly satu-
rated map allowed more QTL to be detected and improved 
the resolution of QTL mapping, but it did not impact the 
relative assessment of genetic modes of action from differ-
ential detection. Through identification of 13 heterotic loci, 
Tang et al. (2010) confirmed the importance of dominance 
effects with respect to the impact of heterosis on grain 
yield. In our study, the use of an IF2 population and a high-
density bin map allowed us to demonstrate that the relative 
contributions of the various genetic effects to heterosis for 
grain yield and yield components were trait dependent.

The mechanism responsible for heterosis seems be 
consistent among maize and rice

Our findings are consistent with those of Zhou et  al. 
(2012), who concluded that the cumulative effects of vari-
ous genetic effects, including dominance, overdominance/
pseudo-overdominance, and epistasis may adequately 
explain the genetic basis of heterosis. Further, partial domi-
nance was the primary contributor to heterosis for almost 
all traits, and the contribution of overdominance was pro-
portional to the level of MPH (Fig. 3). Molecular analyses 
have revealed that the percentage of expressed genes that 
exhibit partial dominance substantially exceeds the number 

that exhibits overdominance (Swanson-Wagner et al. 2006; 
Stupar et al. 2008; Paschold et al. 2012). Notwithstanding 
examples of heterotic yield QTLs caused by pseudo-over-
dominance (Coors and Pandey 1999), no known true over-
dominance QTLs based on single-gene effects have been 
reported for rice or maize (Lippman and Zamir 2007; Xing 
and Zhang 2010). Therefore, we propose that the mecha-
nism responsible for heterosis is consistent among different 
crop species—including rice and maize, which are typical 
self-pollinating and out-crossing species, respectively. That 
is, although various genetic effects contribute to heterosis, 
dominance (including overdominance) is the primary fac-
tor. Taken together, our heterosis results and those of oth-
ers suggest that, although the genetic basis of heterosis is 
known, the molecular basis remains elusive but certainly 
involves multiple genes that differ among crosses with 
respect to the relative contribution of dominance, overdom-
inance, and epistatic effects. Much work needs to be done 
to describe the diverse molecular mechanisms that contrib-
ute to overall hybrid performance.

Heterotic loci are not independent from loci controlling 
per se performance of the hybrid in the IF2 population

Heterotic genes responsible for increasing crop yields are 
now being sought using genomics, particularly transcrip-
tomics (Lippman and Zamir, 2007). Gene expression profil-
ing studies have suggested that specific genes are involved 
in heterosis for a number of traits in maize, rice, and tomato 
(Hoecker et  al. 2008; Wei et  al. 2009; Guo et  al. 2010; 
Krieger et al. 2010). However, whether such genes actually 
contribute to the general molecular mechanisms underly-
ing the formation of hybrid vigor remains to be deter-
mined (Paschold et al. 2012). Previous studies have shown 
that heterotic loci are independent of the QTL that control 
yield-related traits (Hua et  al. 2003; Tang et  al. 2010). In 
our present study, we found that heterotic loci were not 
independent and that they comprised a subset of loci con-
trolling per se performance of the hybrid. Our results show 
that three of five detected QTL for both grain yield and ear 
length in the MPH dataset overlapped with QTL in the IF2 
population, and all of them displayed overdominance in the 
IF2 population (Table S5). For 100-kernel weight and row 
number, only one and two QTL, respectively, were detected 
in the MPH dataset that were also observed in the IF2 popu-
lation that exhibited overdominance (Table S5). In our sim-
ulated analysis, the relationship between heterotic loci and 
per se performance loci was less confusing. As shown in 
Table 1, the frequency of QTL detected in the MPH dataset 
(range 92.2–96.7 %) was observed in the IF2 population, in 
which 61.3–90.5 % of QTL exhibited overdominance. The 
results from both of actual and simulated IF2 populations 
provide evidence for our conclusion—identical genetic 
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modes of action for MPH and per se performance of the 
hybrid. In fact, the genetic basis of grain yield and heterosis 
should not be discussed separately, i.e., it is difficult to elu-
cidate the genetic mechanism underlying grain yield with-
out referring to heterosis, and vice versa.

A high‑density bin map is very useful for positional 
cloning of genes

The availability of high-density markers throughout the 
genome has revolutionized our ability to dissect the genetic 
bases of complex traits. High-density markers enable posi-
tional cloning of genes underlying QTLs (Krieger et  al. 
2010). QTL mapping based on our bin map lowered the 
average genetic distance of QTL between flanking mark-
ers and narrowed this distance by more than 12-fold to less 
than 1 cM within the IF2 population. This relatively small 
distance generally allows the identification of a limited 
number of candidate genes. There were 39 candidate genes 
annotated in the 30 QTLs for grain yield and its compo-
nents (Table S6). Most of these genes were associated with 
photosynthesis, cell growth, differentiation/development, 
and the accumulation of sucrose, starch, and cellulose. 
Five linked genes on chromosome 4 provide candidates for 
further analysis; these include genes encoding glutathione 
S-transferase (GST26), small auxin-up RNA (SAUR31), 
ferredoxin-1, sugary-1 isoamylase (SU1), and C2H2 zinc-
finger protein fragment (McClure et  al. 1989; Hase et  al. 
1991; Marrs 1996; Rahman et  al. 1998; Takatsuji 1998) 
(Figure S4). Not only the five genes located in a significant 
single bin (40.1–41.4 Mb on chromosome 4), but also two 
genes encoding calmodulin binding protein and chloroplas-
tic quinine-oxidoreductase in a single bin (136.1–137.2 Mb 
on chromosome 7), might cause pseudo-overdominance, 
which we could not distinguish from overdominance in this 
study. Cloning the genes responsible for quantitative traits 
will resolve the issue of whether these traits are controlled 
by pseudo-overdominance or overdominance and contrib-
ute further to our understanding of the molecular basis of 
heterosis.
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